The Index of an Algebraic Variety
نویسندگان
چکیده
Let K be the field of fractions of a Henselian discrete valuation ring OK . Let XK/K be a smooth proper geometrically connected scheme admitting a regular model X/OK . We show that the index δ(XK/K) of XK/K can be explicitly computed using data pertaining only to the special fiber Xk/k of the model X. We give two proofs of this theorem, using two moving lemmas. One moving lemma pertains to horizontal 1-cycles on a regular projective scheme X over the spectrum of a semi-local Dedekind domain, and the second moving lemma can be applied to 0-cycles on an FA-scheme X which need not be regular. The study of the local algebra needed to prove these moving lemmas led us to introduce an invariant γ(A) of a singular local ring (A,m): the greatest common divisor of all the Hilbert-Samuel multiplicities e(Q,A), over all m-primary ideals Q in m. We relate this invariant γ(A) to the index of the exceptional divisor in a resolution of the singularity of SpecA, and we give a new way of computing the index of a smooth subvariety X/K of PK over any field K, using the invariant γ of the local ring at the vertex of a cone over X.
منابع مشابه
ON ALGEBRAIC AND COALGEBRAIC CATEGORIES OF VARIETY-BASED TOPOLOGICAL SYSTEMS
Motivated by the recent study on categorical properties of latticevalued topology, the paper considers a generalization of the notion of topological system introduced by S. Vickers, providing an algebraic and a coalgebraic category of the new structures. As a result, the nature of the category TopSys of S. Vickers gets clari ed, and a metatheorem is stated, claiming that (latticevalu...
متن کاملThe Sine-Cosine Wavelet and Its Application in the Optimal Control of Nonlinear Systems with Constraint
In this paper, an optimal control of quadratic performance index with nonlinear constrained is presented. The sine-cosine wavelet operational matrix of integration and product matrix are introduced and applied to reduce nonlinear differential equations to the nonlinear algebraic equations. Then, the Newton-Raphson method is used for solving these sets of algebraic equations. To present ability ...
متن کاملNumerical solution of higher index DAEs using their IAE's structure: Trajectory-prescribed path control problem and simple pendulum
In this paper, we solve higher index differential algebraic equations (DAEs) by transforming them into integral algebraic equations (IAEs). We apply collocation methods on continuous piece-wise polynomials space to solve the obtained higher index IAEs. The efficiency of the given method is improved by using a recursive formula for computing the integral part. Finally, we apply the obtained algo...
متن کاملDually quasi-De Morgan Stone semi-Heyting algebras I. Regularity
This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...
متن کاملSimilarity DH-Algebras
In cite{GL}, B. Gerla and I. Leuc{s}tean introduced the notion of similarity on MV-algebra. A similarity MV-algebra is an MV-algebra endowed with a binary operation $S$ that verifies certain additional properties. Also, Chirtec{s} in cite{C}, study the notion of similarity on L ukasiewicz-Moisil algebras. In particular, strong similarity L ukasiewicz-Moisil algebras were defined. In this paper...
متن کاملFunctorial semantics of topological theories
Following the categorical approach to universal algebra through algebraic theories, proposed by F.~W.~Lawvere in his PhD thesis, this paper aims at introducing a similar setting for general topology. The cornerstone of the new framework is the notion of emph{categorically-algebraic} (emph{catalg}) emph{topological theory}, whose models induce a category of topological structures. We introduce t...
متن کامل